Low-Energy Transformation Pathways between Naphthalene Isomers

Author:

Salomon Grégoire1234,Tarrat Nathalie2ORCID,Schön J. Christian3ORCID,Rapacioli Mathias4ORCID

Affiliation:

1. ISAE-SUPAERO, 10 Avenue Édouard-Belin BP 54032, 31055 Toulouse CEDEX 4, France

2. CEMES, Université de Toulouse, CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse, France

3. MPI for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany

4. Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 31062 Toulouse, France

Abstract

The transformation pathways between low-energy naphthalene isomers are studied by investigating the topology of the energy landscape of this astrophysically relevant molecule. The threshold algorithm is used to identify the minima basins of the isomers on the potential energy surface of the system and to evaluate the probability flows between them. The transition pathways between the different basins and the associated probabilities were investigated for several lid energies up to 11 eV, this value being close to the highest photon energy in the interstellar medium (13.6 eV). More than a hundred isomers were identified and a set of 23 minima was selected among them, on the basis of their energy and probability of occurrence. The return probabilities of these 23 minima and the transition probabilities between them were computed for several lid energies up to 11 eV. The first connection appeared at 3.5 eV while all minima were found to be connected at 9.5 eV. The local density of state was also sampled inside their respective basins. This work gives insight into both energy and entropic barriers separating the different basins, which also provides information about the transition regions of the energy landscape.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3