Bi/CeO2–Decorated CuS Electrocatalysts for CO2-to-Formate Conversion

Author:

Wang Qi1,Bao Tianshuang1,Zhao Xiangchuan1,Cao Yue1ORCID,Cao Jun1,Li Qiaoling1,Si Weimeng1

Affiliation:

1. School of Materials Science and Engineering, Shandong University of Technology, Xincunxi Road 266th, Zibo 255000, China

Abstract

The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) is extensively regarded as a promising strategy to reach carbon neutralization. Copper sulfide (CuS) has been widely studied for its ability to produce C1 products with high selectivity. However, challenges still remain owing to the poor selectivity of formate. Here, a Bi/CeO2/CuS composite was synthesized using a simple solvothermal method. Bi/CeO2–decorated CuS possessed high formate selectivity, with the Faraday efficiency and current density reaching 88% and 17 mA cm−2, respectively, in an H-cell. The Bi/CeO2/CuS structure significantly reduces the energy barrier formed by OCHO*, resulting in the high activity and selectivity of the CO2 conversion to formate. Ce4+ readily undergoes reduction to Ce3+, allowing the formation of a conductive network of Ce4+/Ce3+. This network facilitates electron transfer, stabilizes the Cu+ species, and enhances the adsorption and activation of CO2. Furthermore, sulfur catalyzes the OCHO* transformation to formate. This work describes a highly efficient catalyst for CO2 to formate, which will aid in catalyst design for CO2RR to target products.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Joint Zibo-SDUT Fund

Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3