Chemical and Mechanical Characterization of Licorice Root and Palm Leaf Waste Incorporated into Poly(urethane-acrylate) (PUA)

Author:

Gabrielli SerenaORCID,Pastore Genny,Stella Francesca,Marcantoni EnricoORCID,Sarasini FabrizioORCID,Tirillò JacopoORCID,Santulli CarloORCID

Abstract

A poly(urethane-acrylate) polymer (PUA) was synthesized, and a sufficiently high molecular weight starting from urethane-acrylate oligomer (UAO) was obtained. PUA was then loaded with two types of powdered ligno-cellulosic waste, namely from licorice root and palm leaf, in amounts of 1, 5 and 10%, and the obtained composites were chemically and mechanically characterized. FTIR analysis of final PUA synthesized used for the composite production confirmed the new bonds formed during the polymerization process. The degradation temperatures of the two types of waste used were in line with what observed in most common natural fibers with an onset at 270 °C for licorice waste, and at 290 °C for palm leaf one. The former was more abundant in cellulose (44% vs. 12% lignin), whilst the latter was richer in lignin (30% vs. 26% cellulose). In the composites, only a limited reduction of degradation temperature was observed for palm leaf waste addition and some dispersion issues are observed for licorice root, leading to fluctuating results. Tensile performance of the composites indicates some reduction with respect to the pure polymer in terms of tensile strength, though stabilizing between data with 5 and 10% filler. In contrast, Shore A hardness of both composites slightly increases with higher filler content, while in stiffness-driven applications licorice-based composites showed potential due to an increase up to 50% compared to neat PUA. In general terms, the fracture surfaces tend to become rougher with filler introduction, which indicates the need for optimizing interfacial adhesion.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3