Reactive Molecular Dynamics Simulation on Degradation of Tetracycline Antibiotics Treated by Cold Atmospheric Plasmas

Author:

Guo Jinsen1ORCID,Zhang Yuantao1ORCID

Affiliation:

1. School of Electrical Engineering, Shandong University, Jinan 250061, China

Abstract

The abuse of tetracycline antibiotics (TCs) has caused serious environmental pollution and risks to public health. Degradation of TCs by cold atmospheric plasmas (CAPs) is a high efficiency, low energy consumption and environmentally friendly method. In this study, a reactive molecular dynamics (MD) simulation is applied to study the interactions of reactive oxygen species (ROS) produced in CAPs and TCs (including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and demeclocycline (DMC)). As revealed by the simulation data at the atomic level, the main reaction sites on TCs are the C2 acylamino, the C4 dimethylamine, the C6 methyl group, the C8 site on the benzene ring and the C12a tertiary alcohol. The interaction between ROS and TCs is usually initiated by H-abstraction, followed by the breaking and formation of the crucial chemical bonds, such as the breaking of C-C bonds, C-N bonds and C-O bonds and the formation of C=C bonds and C=O bonds. Due to the different structures of TCs, when the ROS impact OTC, CTC and DMC, some specific reactions are observed, including carbonylation at the C5 site, dechlorination at the C7 site and carbonylation at the C6 site, respectively. Some degradation products obtained from the simulation data have been observed in the experimental measurements. In addition, the dose effects of CAP on TCs by adjusting the number of ROS in the simulation box are also investigated and are consistent with experimental observation. This study explains in detail the interaction mechanisms of degradation of TCs treated by CAPs with the final products after degradation, provides theoretical support for the experimental observation, then suggests optimization to further improve the efficiency of degradation of TCs by CAPs in applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3