Investigating the Neurotoxic Impacts of Arsenic and the Neuroprotective Effects of Dictyophora Polysaccharide Using SWATH-MS-Based Proteomics

Author:

Zhang Jun,Hu Ting,Wang Yi,Zhang Xinglai,Zhang Huajie,Lin Jing,Tang Xiaoxiao,Liu Xukun,Chen Margy,Khan Naseer Ullah,Shen LimingORCID,Luo Peng

Abstract

Arsenic (As) is one of the most important toxic elements in the natural environment. Currently, although the assessment of the potential health risks of chronic arsenic poisoning has received great attention, the research on the effects of arsenic on the brain is still limited. It has been reported that dictyophora polysaccharide (DIP), a common bioactive natural compound found in dietary plants, could reduce arsenic toxicity. Following behavioral research, comparative proteomics was performed to explore the molecular mechanism of arsenic toxicity to the hippocampi of SD (Sprague Dawley) rats and the protective effect of DIP. The results showed that exposure to arsenic impaired the spatial learning and memory ability of SD rats, while DIP treatment improved both the arsenic-exposed rats. Proteomic analysis showed that arsenic exposure dysregulated the expression of energy metabolism, apoptosis, synapse, neuron, and mitochondria related proteins in the hippocampi of arsenic-exposed rats. However, DIP treatment reversed or restored the expression levels of these proteins, thereby improving the spatial learning and memory ability of arsenic-exposed rats. This study is the first to use high-throughput proteomics to reveal the mechanism of arsenic neurotoxicity in rats as well as the protective mechanism of DIP against arsenic neurotoxicity.

Funder

National Natural Science Foundation of China

the Guizhou Science Combined Support

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3