The Utilization of Rice Husk as Both the Silicon Source and Mesoporous Template for the Green Preparation of Mesoporous TiO2/SiO2 and Its Excellent Catalytic Performance in Oxidative Desulfurization

Author:

Liu Xiaoxue1,Zhang Lanfen2,Hu Jian2,Zhang Wei2,Xiang Xiaorong2,Cheng Huiqing1,Qin Li2,Li Hao2ORCID

Affiliation:

1. College of Agriculture, Yangtze University, Jingzhou 434000, China

2. College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China

Abstract

In recent years, TiO2-based catalysts have received extensive attention from researchers for their excellent oxidative desulfurization (ODS) performances. In this paper, a series of mesoporous TiO2/SiO2 catalysts with different TiO2 loadings are prepared, using an incipient wetness impregnation method with agricultural waste rice husk as both the silicon source and mesoporous template and tetrabutyl titanate as the titanium source. The effect of different TiO2 loadings on the ODS performance of the samples is investigated, and the appropriate TiO2 loading is 2.5%. Compared with pure TiO2, the 2.5%TiO2/SiO2 sample exhibits high catalytic activity for oxidative desulfurization. This is, on the one hand, due to the high specific surface area and mesopore volume of the 2.5%TiO2/SiO2 sample. On the other hand, it is due to the uniform dispersion of TiO2 grains with an average diameter of 6.1 nm on the surface of the mesoporous SiO2 carrier, which greatly increases the active sites of the 2.5%TiO2/SiO2 sample, thus improving the catalytic activity of the sample. The recycling performances of the 2.5%TiO2/SiO2 sample are further investigated. The results show that, after fifteen cycles, the 2.5%TiO2/SiO2 sample still maintains high conversions of dibenzothiophene (99.8%) and 4,6-dimethyldibenzothiophene (99.7%) without deactivation. In addition, the 2.5%TiO2/SiO2 sample treated with TBHP aqueous solution is characterized by the technique of UV-Vis, and the Ti-peroxo (Ti-OOtBu) species, the active intermediate for the ODS of bulky organic sulfides, is successfully captured. Finally, a possible reaction mechanism for the ODS process over the 2.5%TiO2/SiO2 sample is proposed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Reference33 articles.

1. Oxidative processes of desulfurization of liquid fuels;Fierro;J. Chem. Technol. Biotechnol.,2010

2. (2018, December 29). Announcement No. 16 of 2018 by the National Development and Reform Commission of the People’s Republic of China, Available online: https://www.ndrc.gov.cn/xxgk/zcfb/gg/201812/t20181229_961214_ext.html.

3. Oxidative desulfurization of fuel oils;Jiang;Chin. J. Catal.,2011

4. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: Advantages and issues;Haghighi;Environ. Sci. Pollut. Res.,2020

5. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil;Wang;Catal. Today,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3