Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe

Author:

Słowiński Daniel1ORCID,Świerczyńska Małgorzata1,Romański Jarosław2,Podsiadły Radosław1ORCID

Affiliation:

1. Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland

2. Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland

Abstract

Hydrogen sulfide (H2S) is an important gasotransmitter, but only a few methods are available for real-time detection. Fluorescent probes are attractive tools for biological applications because of their high sensitivity, convenience, rapid implementation, noninvasive monitoring capability, and simplicity in fluorescent imaging of living cells and tissues. Herein, we report on a pro-fluorescent probe, NAP-Py-N3 based on naphthalimide derivative, which was found to show high selectivity toward H2S over various other analytes, including biothiols, making it feasible to detect H2S. After reaction with H2S, this probe showed rapid and significant turn-on green fluorescent enhancement at 553 nm (about 54-fold, k2 = 9.62 M−1s−1), high sensitivity (LOD: 15.5 nM), significant Stokes shift (118 nm), and it was found that the fluorescence quantum yield of fluorescence product can reach 0.36. Moreover, the probe has also been successfully applied to detect the gaseous H2S and to confirm the presence of H2S released from modern organic donors, which in recent years have been commonly used to investigate the role of H2S in biological systems. All the results indicate that this probe is excellent and highly valuable.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3