Abstract
Quinolones comprise a series of synthetic bactericidal agents with a broad spectrum of activity and good bioavailability. An important feature of these molecules is their capacity to bind metal ions in complexes with relevant biological and analytical applications. Interestingly, lanthanide ions possess extremely attractive properties that result from the behavior of the internal 4f electrons, behavior which is not lost upon ionization, nor after coordination. Subsequently, a more detailed discussion about metal complexes of quinolones with lanthanide ions in terms of chemical and biological properties is made. These complexes present a series of characteristics, such as narrow and highly structured emission bands; large gaps between absorption and emission wavelengths (Stokes shifts); and long excited-state lifetimes, which render them suitable for highly sensitive and selective analytical methods of quantitation. Moreover, quinolones have been widely prescribed in both human and animal treatments, which has led to an increase in their impact on the environment, and therefore to a growing interest in the development of new methods for their quantitative determination. Therefore, analytical applications for the quantitative determination of quinolones, lanthanide and miscellaneous ions and nucleic acids, along with other applications, are reviewed here.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Antitumor neodymium(III) complex with 1,10-phenanthroline and nitrate ligands: A comprehensive experimental-theoretical study, in silico pharmacokinetic and cytotoxic properties;Journal of Molecular Structure;2025-02
2. Erbium(III) complexes with fluoroquinolones: Structure and biological properties;Journal of Inorganic Biochemistry;2024-06
3. A molybdenum-ciprofloxacin complex with an isopolyoxometalate having DNA binding and antibacterial activity;Journal of Coordination Chemistry;2024-03-03
4. Syntheses, structures and photophysical properties of Ni/Co Ln coordination polymers;Journal of Molecular Structure;2024-03
5. Designing, Characterization, DFT, Biological Effectiveness, and Molecular Docking Analysis of Novel Fe(III), Co(II), and Cu(II) Complexes Based on 4-Hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione;ACS Omega;2024-02-01