Making Sense of the Growth Behavior of Ultra-High Magnetic Gd2-Doped Silicon Clusters

Author:

Xie Biao1,Wang Huai-Qian12ORCID,Li Hui-Fang2,Zhang Jia-Ming1,Zeng Jin-Kun1,Mei Xun-Jie2,Zhang Yong-Hang1,Zheng Hao1,Qin Lan-Xin2

Affiliation:

1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China

2. College of Engineering, Huaqiao University, Quanzhou 362021, China

Abstract

The growth behavior, stability, electronic and magnetic properties of the Gd2Sin− (n = 3–12) clusters are reported, which are investigated using density functional theory calculations combined with the Saunders ‘Kick’ and the Artificial Bee Colony algorithm. The lowest-lying structures of Gd2Sin− (n = 3–12) are all exohedral structures with two Gd atoms face-capping the Sin frameworks. Results show that the pentagonal bipyramid (PB) shape is the basic framework for the nascent growth process of the present clusters, and forming the PB structure begins with n = 5. The Gd2Si5− is the potential magic cluster due to significantly higher average binding energies and second order difference energies, which can also be further verified by localized orbital locator and adaptive natural density partitioning methods. Moreover, the localized f-electron can be observed by natural atomic orbital analysis, implying that these electrons are not affected by the pure silicon atoms and scarcely participate in bonding. Hence, the implantation of these elements into a silicon substrate could present a potential alternative strategy for designing and synthesizing rare earth magnetic silicon-based materials.

Funder

Natural Science Foundation of Fujian Province of China

Science and Technology Plan of Quanzhou

New Century Excellent Talents in Fujian Province University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3