The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations

Author:

Belyakov Alexander V.1ORCID,Altova Ekaterina P.2,Rykov Anatoliy N.2,Sharanov Pavel Yu.2,Shishkov Igor F.2,Romanov Alexander S.3ORCID

Affiliation:

1. Saint-Petersburg State Technological Institute, 190013 Saint Petersburg, Russia

2. Department of Chemistry, Moscow State University, 119992 Moscow, Russia

3. Department of Chemistry, University of Manchester, Oxford Rd., Manchester M13 9PL, UK

Abstract

Copper-centered carbene–metal–halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene–metal–amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH phosphors in the absence of the intermolecular contacts, we report here the equilibrium molecular structure of the (CAAC)Cu(I)Cl (1) molecule in the gas-phase. We demonstrate that linear geometry around a copper atom shows no distortions in the ground state. The structure of complex 1 has been determined using the electron diffraction method, supported by quantum chemical calculations with RI-MP2/def2-QZVPP level of theory and compared with the crystal structure determined by X-ray diffraction analysis. Mean vibrational amplitudes, uij,h1, and anharmonic vibrational corrections (rij,e • rij,a) were calculated for experimental temperature T = 20 °C, using quadratic and cubic force constants, respectively. The quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis of wave function at MN15/def2TZVP level of theory revealed two Cu…H, three H…H, and one three-center H…H…H bond paths with bond critical points. NBO analysis also revealed three-center, four-electron hyperbonds, (3c4e), [π(N–C) nπ(Cu) ↔ nπ(N) π(N–Cu)], or [N–C: Cu ↔ N: C–Cu] and nπ(Cu) → π(C–N)* hyperconjugation, that is the delocalization of the lone electron pair of Cu atom into the antibonding orbital of C–N bond.

Funder

Royal Society

Molecular and supramolecular organization of compounds, hybrid and functional materials

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3