Fungicidal Activity of Recombinant Javanicin against Cryptococcus neoformans Is Associated with Intracellular Target(s) Involved in Carbohydrate and Energy Metabolic Processes

Author:

Orrapin Santhasiri,Roytrakul SittirukORCID,Phaonakrop Narumon,Thaisakun Siriwan,Tragoolpua KhajornsakORCID,Intorasoot Amornrat,McGill Suzanne,Burchmore RichardORCID,Intorasoot SorasakORCID

Abstract

The occurrence of Cryptococcus neoformans, the human fungal pathogen that primarily infects immunocompromised individuals, has been progressing at an alarming rate. The increased incidence of infection of C. neoformans with antifungal drugs resistance has become a global concern. Potential antifungal agents with extremely low toxicity are urgently needed. Herein, the biological activities of recombinant javanicin (r-javanicin) against C. neoformans were evaluated. A time-killing assay was performed and both concentration- and time-dependent antifungal activity of r-javanicin were indicated. The inhibitory effect of the peptide was initially observed at 4 h post-treatment and ultimately eradicated within 36 to 48 h. Fungal outer surface alteration was characterized by the scanning electron microscope (SEM) whereas a negligible change with slight shrinkage of external morphology was observed in r-javanicin treated cells. Confocal laser scanning microscopic analysis implied that the target(s) of r-javanicin is conceivably resided in the cell thereby allowing the peptide to penetrate across the membrane and accumulate throughout the fungal body. Finally, cryptococcal cells coped with r-javanicin were preliminarily investigated using label-free mass spectrometry-based proteomics. Combined with microscopic and proteomics analysis, it was clearly elucidated the peptide localized in the intracellular compartment where carbohydrate metabolism and energy production associated with glycolysis pathway and mitochondrial respiration, respectively, were principally interfered. Overall, r-javanicin would be an alternative candidate for further development of antifungal agents.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3