Affiliation:
1. Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
2. Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
Abstract
Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic materials is highly desired—among other reasons—to increase the coloration performance. Hence, four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3′-PhDI were synthesized and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3′-dimethylnaphtidin (3,3′-PhDI) bridge. To observe the effect of chemical structure on physicochemical properties, various positions of imide bond were considered, namely, 1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two 1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, electrochemical (CV, DPV) and spectroelectrochemical (UV–Vis and EPR) analyses were performed to evaluate the obtained materials in terms of their application as cathodic electrochromic materials. All obtained materials undergo reversible electrochemical reduction which leads to changes in their optical properties. In the case of imide derivatives, absorption bands related to both reduced and neutral forms are located in the UV region. However, importantly, the introduction of the 3,3′-dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption band of 3,3′-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain stable, cathodic electrochromic materials.
Funder
Polish Budget Founds for Scientific Research
National Science Center (NCN), Poland
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science