Antioxidant and Antimicrobial Potencies of Chemically-Profiled Essential Oil from Asteriscus graveolens against Clinically-Important Pathogenic Microbial Strains

Author:

Aljeldah Mohammed M.

Abstract

Recently, the antimicrobial potential of essential oils extracted from plants has gained extensive research interest, primarily for the development of novel antimicrobial treatments to combat emerging microbial resistance. The current study aims at investigating the antimicrobial activity and chemical composition of essential oil derived from gold coin daisy, which is known as Asteriscus graveolens (EOAG). In this context, a gas chromatography-tandem mass spectrometry (GC-MS) analysis of EOAG was conducted to identify its phytoconstituents. The in vitro antioxidant capacity of EOAG was determined by the use of three tests, namely: 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP), and total antioxidant capacity (TAC). The antimicrobial activity of EOAG against clinically important bacterial (Escherichia coli, K12; Staphylococcus aureus, ATCC 6633; Bacillus subtilis, DSM 6333; and Pseudomonas aeruginosa, CIP A22) and fungal (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913) strains was assessed. Antimicrobial efficacy was determined on solid (inhibition diameter) and liquid media to calculate the minimum inhibitory concentration (MIC). GC/MS profiling of EOAG revealed that 18 compounds were identified, with a dominance of α-Thujone (17.92%) followed by carvacrol (14.14%), with a total identification of about 99. 92%. The antioxidant activity of EOAG was determined to have IC50 values of 34.81 ± 1.12 µg/mL (DPPH), 89.37 ± 5.02 µg/mL (FRAP), and 1048.38 ± 10.23 µg EAA/mg (TAC). The antibacterial activity in a solid medium revealed that the largest diameter was recorded in P. aeruginosa (28.47 ± 1.44 mm) followed by S. aureus (27.41 ± 1.54 mm), and the MIC in S. aureus was 12.18 ± 0.98 µg / mL. For the antifungal activity of EOAG, the largest inhibition diameter was found in F. oxysporum (33.62 ± 2.14 mm) followed by C. albicans (26.41 ± 1.90 mm), and the smallest MIC was found in F. oxysporum (18.29 ± 1.21 µg/mL) followed by C. albicans (19.39 ± 1.0 µg/mL). In conclusion, EOAG can be useful as a natural antimicrobial and antioxidant agent and an alternative to synthetic antibiotics. Hence, they might be utilized to treat a variety of infectious disorders caused by pathogenic microorganisms, particularly those that have gained resistance to standard antibiotics.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference43 articles.

1. The Traditional Moroccan Pharmacopoeia: Ancient Arabic Medicine and Popular Knowledge;Bellakhdar,1997

2. Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities

3. L’aromathérapie et les huiles essentielles

4. Biological effects of essential oils – A review

5. Antimicrobial Activity of Essential Oils: A 1976-1986 Literature Review;Janssen;Aspects Test Methods. Planta Med.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3