Synthesis and Cytotoxic Analysis of Novel Myrtenyl Grafted Pseudo-Peptides Revealed Potential Candidates for Anticancer Therapy

Author:

Concepción Odette,Belmar JulioORCID,F. de la Torre AlexanderORCID,M. Muñiz FranciscoORCID,Pertino Mariano W.ORCID,Alarcón Barbara,Ormazabal Valeska,Nova-Lamperti Estefania,Zúñiga Felipe A.,Jiménez Claudio A.ORCID

Abstract

Myrtenal is a natural monoterpene isolated from essential oils of several plants and their derivates have shown to have several biological properties including cytotoxicity. The cytotoxic activity of these derivates are being investigated for their antitumor effect leading to the development of potential anticancer agents. In this study, novels Myrtenyl grafted pseudo-peptides were designed, synthesized and functionally characterized as possible therapeutic agents for cancer treatment. Thirteen novel Myrtenyl grafted pseudo-peptides were prepared in high atom economy and efficiency by a classic Ugi-4CR and sequential post-modification. Their structures were confirmed by NMR, and ESI-MS, and its cytotoxic activity was evaluated in three cancer cell lines and primary CD4+ T cells at different proliferative cycles. Our results revealed that some of these compounds showed significant cytotoxicity against human gastric, breast and colon adenocarcinoma cells lines, but not against human dermal fibroblast cell line. Moreover, from the thirteen novel myrtenyl synthesized the compound (1R,5S)-N-{[1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl]methyl}-N-[2-(cyclohexylamino)-2–oxoethyl]-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamide (3b) proved to be the best candidate in terms of acceptable EC50, and Emax values in cancer cell lines and at inducing cytotoxicity in CD4+ T cells undergoing active proliferation, without affecting non-proliferating T cells. Overall, the synthesis and characterization of our Myrtenyl derivates revealed novel potential anticancer candidates with selective cytotoxic activity.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3