Intermolecular CH-π Electrons Interaction in Poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO): An Experimental and Theoretical Study

Author:

Elzupir Amin O.ORCID,Hussein Rageh K.ORCID,Ibnaouf Khalid H.ORCID

Abstract

This study demonstrates the presence of CH-π interaction in poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO-1) due to an aggregate formation of PFO-1 in the liquid state. The absorption spectra of PFO-1 in certain solvents at low concentrations showed a single band at 390 nm. However, when using high concentrations, a new band at 437 nm appeared. This band is due to the aggregate formation of PFO-1. The aggregate formation occurs as a result of the CH interaction of the n-alkyl side chains with π-electrons in the benzene ring. The optical characteristics of another conjugated polymer of poly [9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl] (PFO-2) were investigated to confirm the CH-π interaction. The absorption showed only one wavelength at 390 nm without any new band at the end of the spectrum, even at higher concentrations and lower temperatures. The main reason for the absence of aggregate formation in PFO-2 is the sterical hindrance caused by the branched alkyl side chains. In addition, Density Functional Theory (DFT) was used to compute the HOMO–LUMO transitions, electron charge distribution, and frontier molecular orbitals for each polymer. The Mulliken charge distribution and demonstrated a notable difference in the reactivity of the alkyl side chain, confirming the higher ability of PFO-1 to form CH-π bonds. docking model emphasized that the band at 437 nm could be attributed to the interaction between CH in the n-alkyl side chain and π bonds in the aromatic rings of PFO-1.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3