Affiliation:
1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
2. Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031, China
3. Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
Abstract
Most research on immobilized microorganisms employs biomass charcoal as a carrier, but limited studies explore coal-based resources for microbial immobilization. Herein, lead-resistant functional strains were immobilized using weathered coal as a carrier, resulting in the development of a weathered coal-immobilized microbial material (JK-BW) exhibiting high efficiency in lead removal from solutions. A quadratic polynomial model for the adsorption capacity and adsorption rate of JK-BW on Pb2+ was developed using the Box-Behnken method to determine the optimal adsorption conditions. The Pb2+ adsorption mechanism of JK-BW was studied through batch adsorption and desorption experiments along with SEM-EDS, BET, FT-IR, and XPS analyses. Findings indicated that optimal conditions were identified at 306 K temperature, 0.36 g/L adsorbent dosage, and 300 mg/L initial solution concentration, achieving a peak adsorption performance of 338.9 mg/g (308 K) for the immobilized material, surpassing free cell adsorption by 3.8 times. Even after four cycles of repeated use, the material maintained its high adsorption capacity. Pb2+ adsorption by JK-BW involved monolayer chemisorption with ion exchange, complexation, precipitation, physical adsorption, and microbial intracellular phagocytosis. Ion exchange accounted for 22–42% and complexation accounted for 39–57% of the total adsorption mechanisms, notably involving exchanges with K, Ca, Na, and Mg ions as well as complexation with –OH, –COOH, CO–OH, –COOH, CO–, NH2, and the β-ring of pyridine for Pb2+ adsorption.
Funder
National Key R&D Projects
Natural Science Foundation of Shanxi Province
Outstanding Doctor of Shanxi Province
Start-up Program for Doctor of Shanxi Agricultural University