Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles

Author:

Adamowska MonikaORCID,Pałuba BartoszORCID,Hyk Wojciech

Abstract

A chronoamperometric procedure for the preparation of silver nanoparticles (AgNPs) in aqueous systems with no extra added stabilizing agents is presented. The uniqueness of the prepared nanoparticle systems was explored by theoretical considerations. The proposed theoretical model predicts the structural parameters of the obtained nanoparticle system. The parameters required for the calculations (the zeta potential, conductivity, and effective diffusion coefficient of ionic silver) are available from independently performed measurements. Chronoamperometry at a microelectrode was employed for the evaluation of the effective diffusion coefficient of ionic silver present in the AgNP solution. The values of AgNP radii predicted by the theoretical model for the selected samples were compared to those obtained by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) methods. Because of the high polydispersity of the prepared nanoparticle samples, DLS results were overestimated in comparison to both: the TEM results and some theoretical predictions. By correcting the theoretical predictions by the Debye length, the calculated nanoparticle sizes become comparable (within their expanded uncertainties) to those measured in TEM images, especially for the nanosystems at early stages of their formation via the electrosynthesis process.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3