The Resonance Raman Spectrum of Cytosine in Water: Analysis of the Effect of Specific Solute–Solvent Interactions and Non-Adiabatic Couplings

Author:

Xu Qiushuang123,Liu Yanli2,Wang Meishan12ORCID,Cerezo Javier34ORCID,Improta Roberto5ORCID,Santoro Fabrizio3ORCID

Affiliation:

1. School of Physics Engineering, Qufu Normal University, Qufu 273165, China

2. School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China

3. Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy

4. Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain

5. Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy

Abstract

In this contribution, we report a computational study of the vibrational Resonance Raman (vRR) spectra of cytosine in water, on the grounds of potential energy surfaces (PES) computed by time-dependent density functional theory (TD-DFT) and CAM-B3LYP and PBE0 functionals. Cytosine is interesting because it is characterized by several close-lying and coupled electronic states, challenging the approach commonly used to compute the vRR for systems where the excitation frequency is in quasi-resonance with a single state. We adopt two recently developed time-dependent approaches, based either on quantum dynamical numerical propagations of vibronic wavepackets on coupled PES or on analytical correlation functions for cases in which inter-state couplings were neglected. In this way, we compute the vRR spectra, considering the quasi-resonance with the eight lowest-energy excited states, disentangling the role of their inter-state couplings from the mere interference of their different contributions to the transition polarizability. We show that these effects are only moderate in the excitation energy range explored by experiments, where the spectral patterns can be rationalized from the simple analysis of displacements of the equilibrium positions along the different states. Conversely, at higher energies, interference and inter-state couplings play a major role, and the adoption of a fully non-adiabatic approach is strongly recommended. We also investigate the effect of specific solute–solvent interactions on the vRR spectra, by considering a cluster of cytosine, hydrogen-bonded by six water molecules, and embedded in a polarizable continuum. We show that their inclusion remarkably improves the agreement with the experiments, mainly altering the composition of the normal modes, in terms of internal valence coordinates. We also document cases, mostly for low-frequency modes, in which a cluster model is not sufficient, and more elaborate mixed quantum classical approaches, in explicit solvent models, need to be applied.

Funder

ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union–NextGenerationEU-PNRR

CNR

China Scholarship Council

National Natural Science Foundation of China

Ministerio de Universidades, Plan de Recuperación, Transformación y Resiliencia, and UAM

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3