Novel PDI-NH/PDI-COOH Supramolecular Junction for Enhanced Visible-Light Photocatalytic Phenol Degradation

Author:

Xu Yongzhang12,Luo Xingrui1ORCID,Wang Fulin1,Xiang Wentao1,Zhou Chensheng1,Huang Weiya1ORCID,Lu Kangqiang1ORCID,Li Shaoyu1,Zhou Man3,Yang Kai1ORCID

Affiliation:

1. Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Jiangxi Provincial Engineering Technology Research Center for Electronic Chemicals of Printed Circuit Boards, Ganzhou 341000, China

3. School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China

Abstract

The development of efficient and environmentally friendly photocatalysts is crucial for addressing global energy and environmental challenges. Perylene diimide, an organic supramolecular material, holds great potential for applications in mineralized phenol. In this study, through the integration of different mass ratios of unmodified perylenimide (PDI-NH) into the self-assembly of amino acid-substituted perylenimide (PDI-COOH), a novel supramolecular organic heterojunction (PDICOOH/PDINH) was fabricated. The ensuing investigation focuses on its visible-light mineralized phenol properties. The results show that the optimal performance is observed with a composite mass fraction of 10%, leading to complete mineralization of 5 mg/L phenol within 5 h. The reaction exhibits one-stage kinetics with rate constants 13.80 and 1.30 times higher than those of PDI-NH and PDI-COOH, respectively. SEM and TEM reveal a heterogeneous interface between PDI-NH and PDI-COOH. Photoelectrochemical and Kelvin probe characterization confirm the generation of a built-in electric field at the interface, which is 1.73 times stronger than that of PDI-COOH. The introduction of PDI-NH promotes π-π stacking of PDI-COOH, while the built-in electric field facilitates efficient charge transfer at the interface, thereby enhancing phenol decomposition. The finding demonstrates that supramolecular heterojunctions have great potential as highly effective photocatalysts for environmental remediation applications.

Funder

National Natural Science Foundation of China

Projects of Jiangxi Provincial Natural Science Foundation

Jiangxi Province “Double Thousand” Talent Training Plan

Program of Qingjiang Excellent Young Talents at JXUST

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3