How Humic Acids Affect the Rheological and Transport Properties of Hydrogels

Author:

Klucakova MartinaORCID,Smilek Jiri,Sedlacek PetrORCID

Abstract

Humic acids are often regarded as substances with a supramolecular structure which plays an important role in Nature. Their addition into hydrogels can affect their behavior and functioning in different applications. This work is focused on the properties of widely-used hydrogel based on agarose after addition of humic acids–the protonated H-form of humic acids and humic acids with methylated carboxylic groups. Hydrogels enriched by humic acids were studied in terms of their viscoelastic and transport properties. Rotational rheometry and methods employing diffusion cells were used in order to describe the influence of humic acids on the properties and behavior of hydrogels. From the point of view of rheology the addition of humic acids mainly affected the loss modulus corresponding to the relaxation of hydrogel connected with its flow. In the case of diffusion experiments, the transport of dyes (methylene blue and rhodamine) and metal ions (copper and nickel) through the hydrogel was affected by interactions between humic acids and the diffusion probes. The time lag in the hydrogel enriched by humic acids was prolonged for copper, methylene blue and rhodamine. In contrast, the presence of humic acids in hydrogel slightly increased the mobility of nickel. The strongest influence of the methylation of humic acids on diffusion was observed for methylene blue.

Funder

Ministry of Education, Youth and Sports, Czech Republic

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3