Asymmetric Sulfoxidation by a Tyrosinase Biomimetic Dicopper Complex with a Benzimidazolyl Derivative of L-Phenylalanine

Author:

Lo Presti Eliana1,Schifano Fabio1ORCID,Bacchella Chiara1,Santagostini Laura2ORCID,Casella Luigi1ORCID,Monzani Enrico1ORCID

Affiliation:

1. Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy

2. Dipartimento di Chimica, Università di Milano, Via Golgi 19, 20133 Milano, Italy

Abstract

A challenge in mimicking tyrosinase activity using model compounds is to reproduce its enantioselectivity. Good enantioselection requires rigidity and a chiral center close to the active site. In this study, the synthesis of a new chiral copper complex, [Cu2(mXPhI)]4+/2+, based on an m-xylyl-bis(imidazole)-bis(benzimidazole) ligand containing a stereocenter with a benzyl residue directly bound on the copper chelating ring, is reported. Binding experiments show that the cooperation between the two metal centers is weak, probably due to steric hindrance given by the benzyl group. The dicopper(II) complex [Cu2(mXPhI)]4+ has catalytic activity in the oxidations of enantiomeric couples of chiral catechols, with an excellent discrimination capability for Dopa-OMe enantiomers and a different substrate dependence, hyperbolic or with substrate inhibition, for the L- or D- enantiomers, respectively. [Cu2(mXPhI)]4+ is active in a tyrosinase-like sulfoxidation of organic sulfides. The monooxygenase reaction requires a reducing co-substrate (NH2OH) and yields sulfoxide with significant enantiomeric excess (e.e.). Experiments with 18O2 and thioanisole yielded sulfoxide with 77% incorporation of 18O, indicating a reaction occurring mostly through direct oxygen transfer from the copper active intermediate to the sulfide. This mechanism and the presence of the chiral center of the ligand in the immediate copper coordination sphere are responsible for the good enantioselectivity observed.

Funder

Italian Ministry of Education, University, and Research (MIUR)—Research Projects of National Interest

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3