Quantitation of Tissue Amyloid via Fluorescence Spectroscopy Using Controlled Concentrations of Thioflavin-S

Author:

MacKeigan Tatiana P.1ORCID,Morgan Megan L.1ORCID,Stys Peter K.1ORCID

Affiliation:

1. Hotchkiss Brain Institute, Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada

Abstract

Amyloids are misfolded proteins that aggregate into fibrillar structures, the accumulation of which is associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer’s disease (AD). Early, sensitive detection of these misfolded aggregates is of great interest to the field, as amyloid deposition begins well before the presentation of clinical symptoms. Thioflavin-S (ThS) is a fluorescent probe commonly used to detect amyloid pathology. Protocols for ThS staining vary, but they often use high staining concentrations followed by differentiation, which causes varying levels of non-specific staining and potentially leaves more subtle amyloid deposition unidentified. In this study, we developed an optimized ThS staining protocol for the sensitive detection of β-amyloids in the widely used 5xFAD Alzheimer’s mouse model. Controlled dye concentrations together with fluorescence spectroscopy and advanced analytical methods enabled not only the visualization of plaque pathology, but also the detection of subtle and widespread protein misfolding throughout the 5xFAD white matter and greater parenchyma. Together, these findings demonstrate the efficacy of a controlled ThS staining protocol and highlight the potential use of ThS for the detection of protein misfolding that precedes clinical manifestation of disease.

Funder

Alberta Innovates

Multiple Sclerosis Society of Canada

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3