Transformation of Tetracycline by Manganese Peroxidase from Phanerochaete chrysosporium

Author:

Sun Xuemei,Leng YifeiORCID,Wan Duanji,Chang Fengyi,Huang Yu,Li Zhu,Xiong Wen,Wang JunORCID

Abstract

The negative impacts on the ecosystem of antibiotic residues in the environment have become a global concern. However, little is known about the transformation mechanism of antibiotics by manganese peroxidase (MnP) from microorganisms. This work investigated the transformation characteristics, the antibacterial activity of byproducts, and the degradation mechanism of tetracycline (TC) by purified MnP from Phanerochaete chrysosporium. The results show that nitrogen-limited and high level of Mn2+ medium could obtain favorable MnP activity and inhibit the expression of lignin peroxidase by Phanerochaete chrysosporium. The purified MnP could transform 80% tetracycline in 3 h, and the threshold of reaction activator (H2O2) was about 0.045 mmol L−1. After the 3rd cyclic run, the transformation rate was almost identical at the low initial concentration of TC (77.05–88.47%), while it decreased when the initial concentration was higher (49.36–60.00%). The antimicrobial potency of the TC transformation products by MnP decreased throughout reaction time. We identified seven possible degradation products and then proposed a potential TC transformation pathway, which included demethylation, oxidation of the dimethyl amino, decarbonylation, hydroxylation, and oxidative dehydrogenation. These findings provide a novel comprehension of the role of MnP on the fate of antibiotics in nature and may develop a potential technology for tetracycline removal.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3