Integrated Approach for Synthetic Cathinone Drug Prioritization and Risk Assessment: In Silico Approach and Sub-Chronic Studies in Daphnia magna and Tetrahymena thermophila

Author:

Pérez-Pereira Ariana12,Carvalho Ana Rita1,Carrola João Soares23,Tiritan Maria Elizabeth145ORCID,Ribeiro Cláudia1ORCID

Affiliation:

1. TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal

2. Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), CITAB, 5000-801 Vila Real, Portugal

3. Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal

4. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal

5. Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

Abstract

Synthetic cathinones (SC) are drugs of abuse that have been reported in wastewaters and rivers raising concern about potential hazards to non-target organisms. In this work, 44 SC were selected for in silico studies, and a group of five emerging SC was prioritized for further in vivo ecotoxicity studies: buphedrone (BPD), 3,4-dimethylmethcathinone (3,4-DMMC), butylone (BTL), 3-methylmethcathinone (3-MMC), and 3,4-methylenedioxypyrovalerone (MDPV). In vivo short-term exposures were performed with the protozoan Tetrahymena thermophila (28 h growth inhibition assay) and the microcrustacean Daphnia magna by checking different indicators of toxicity across life stage (8 days sublethal assay at 10.00 µg L−1). The in silico approaches predicted a higher toxic potential of MDPV and lower toxicity of BTL to the model organisms (green algae, protozoan, daphnia, and fish), regarding the selected SC for the in vivo experiments. The in vivo assays showed protozoan growth inhibition with MDPV > BPD > 3,4-DMMC, whereas no effects were observed for BTL and stimulation of growth was observed for 3-MMC. For daphnia, the responses were dependent on the substance and life stage. Briefly, all five SC interfered with the morphophysiological parameters of juveniles and/or adults. Changes in swimming behavior were observed for BPD and 3,4-DMMC, and reproductive parameters were affected by MDPV. Oxidative stress and changes in enzymatic activities were noted except for 3-MMC. Overall, the in silico data agreed with the in vivo protozoan experiments except for 3-MMC, whereas daphnia in vivo experiments showed that at sublethal concentrations, all selected SC interfered with different endpoints. This study shows the importance to assess SC ecotoxicity as it can distress aquatic species and interfere with food web ecology and ecosystem balance.

Funder

portuguese national funds

FCT—Foundation for Science and Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3