Green Inhibition of Corrosion of Aluminium Alloy 5083 by Artemisia annua L. Extract in Artificial Seawater

Author:

Zlatić Gloria1,Martinović Ivana1ORCID,Pilić Zora1ORCID,Paut Andrea2ORCID,Mitar Ivana3ORCID,Prkić Ante2ORCID,Čulum Dušan4

Affiliation:

1. Department of Chemistry, Faculty of Science and Education, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina

2. Faculty of Chemistry and Technology, University of Split, Ruđer Bošković 35, 21000 Split, Croatia

3. Faculty of Science, University of Split, Ruđer Bošković 33, 21000 Split, Croatia

4. Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina

Abstract

Plant extracts are increasingly being examined in the corrosion inhibition of metal and alloys in various environments due to their potent antioxidant properties. The use of Artemisia annua L. aqueous extract (AAE) as an aluminium alloy 5083 (ALA) corrosion inhibitor in artificial seawater (ASW) was investigated using electrochemical tests and spectroscopy tools, while the active biocompounds found in AAE were analyzed using high-performance liquid chromatography (HPLC). Electrochemical results showed that AAE acts as an anodic inhibitor through the physisorption (ΔG ≈ –16.33 kJ mol−1) of extract molecules on the ALA surface, thus reducing the active sites for the dissolution of the alloy in ASW. Fourier-transform infrared spectra confirmed that phenolic acids found in AAE formed the surface layer that protects ALA against the corrosive marine environment, while HPLC analysis confirmed that the main phytoconstituents of AAE were chlorogenic acid and caffeic acid. The inhibition action of phenolic acids and their derivatives found in the AAE was based on the physisorption of caffeic acid on the ALA surface, which improved physicochemical properties of the barrier film and/or conversion of Al3+ to elemental aluminium by phenolic acids as reducens, which slowed down the diffusion rate of Al3+ to or from the ALA surfaces. The protective effect of the surface layer formed in the presence of AAE against ASW was also confirmed by inductively coupled plasma–optical emission spectrometry (ICP-OES) whereby the measured concentration of Al ions after 1 h of immersion of ALA in the pure ASW was 15.30 μg L−1 cm−2, while after the addition of 1 g L−1 AAE, the concentration was 3.09 μg L−1 cm−2.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3