Author:
He Qing,Zhu Dongdong,Wu Xiaocheng,Dong Duo,Xu Meng,Tong Zhaofei
Abstract
A detailed analysis of the dehydrogenation mechanism of LiBH4/xLiAlH4 (x = 0.5, 1, 2) composites was performed by thermogravimetry (TG), differential scanning calorimetry (DSC), mass spectral analysis (MS), powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM), along with kinetic investigations using a Sievert-type apparatus. The results show that the dehydrogenation pathway of LiBH4/xLiAlH4 had a four-step character. The experimental dehydrogenation amount did not reach the theoretical expectations, because the products such as AlB2 and LiAl formed a passivation layer on the surface of Al and the dehydrogenation reactions associated with Al could not be sufficiently carried out. Kinetic investigations discovered a nonlinear relationship between the activation energy (Ea) of dehydrogenation reactions associated with Al and the ratio x, indicating that the Ea was determined both by the concentration of Al produced by the decomposition of LiAlH4 and the amount of free surface of it. Therefore, the amount of effective contact surface of Al is the rate-determining factor for the overall dehydrogenation of the LiBH4/xLiAlH4 composites.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献