Abstract
Water is a molecule always present in the reaction environment in photocatalytic and biomedical applications of TiO2 and a better understanding of its interaction with the surface of TiO2 nanoparticles is crucial to develop materials with improved performance. In this contribution, we first studied the nature and the surface structure of the exposed facets of three commercial TiO2 samples (i.e., TiO2 P25, SX001, and PC105) by electron microscopy and IR spectroscopy of adsorbed CO. The morphological information was then correlated with the water adsorption properties, investigated at the molecular level, moving from multilayers of adsorbed H2O to the monolayer, combining medium- and near-IR spectroscopies. Finally, we assessed in a quantitative way the surface hydration state at different water equilibrium pressures by microgravimetric measurements.
Funder
Seventh Framework Programme
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献