Eco-Conscious Approach to Thermoresponsive Star-Comb and Mikto-Arm Polymers via Enzymatically Assisted Atom Transfer Radical Polymerization Followed by Ring-Opening Polymerization

Author:

Fronczyk Tomasz1ORCID,Mielańczyk Anna1ORCID,Klymenko Olesya2,Erfurt Karol3ORCID,Neugebauer Dorota1ORCID

Affiliation:

1. Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100 Gliwice, Poland

2. Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland

3. Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland

Abstract

This study explores the synthesis, characterization, and application of a heterofunctional initiator derived from 2-hydroxypropyl cyclodextrin (HP-β-CD), having eight bromoester groups and thirteen hydroxyl groups allowing the synthesis of mikto-arm star-shaped polymers. The bromoesterification of HP-β-CD was achieved using α-bromoisobutyryl bromide as the acylation reagent, modifying the cyclodextrin (CD) molecule as confirmed by electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and differential scanning calorimetry (DSC) thermograms. The initiator’s effectiveness was further demonstrated by obtaining star-comb and mikto-arm polymers via an enzymatically assisted atom transfer radical polymerization (ATRP) method and subsequent ring-opening polymerization (ROP). The ATR polymerization quality and control depended on the type of monomer and was optimized by the way of introducing the initiator into the reaction mixture. In the case of ATRP, high conversion rates for poly(ethylene oxide) methyl ether methacrylate (OEOMA), with molecular weights (Mn) of 500 g/mol and 300 g/mol, were achieved. The molecular weight distribution of the obtained polymers remained in the range of 1.23–1.75. The obtained star-comb polymers were characterized by different arm lengths. Unreacted hydroxyl groups in the core of exemplary star-comb polymers were utilized in the ROP of ε-caprolactone (CL) to obtain a hydrophilic mikto-arm polymer. Cloud point temperature (TCP) values of the synthesized polymers increased with arm length, indicating the polymers’ reduced hydrophobicity and enhanced solvation by water. Atomic force microscopy (AFM) analysis revealed the ability of the star-comb polymers to create fractals. The study elucidates advancements in the synthesis and utilization of hydrophilic sugar-based initiators for enzymatically assisted ATRP in an aqueous solution for obtaining complex star-comb polymers in a controlled manner.

Funder

Polish Budget Funds

Rector of Silesian University of Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3