Optimization Conditions of Malachite Green Adsorption onto Almond Shell Carbon Waste Using Process Design

Author:

Chouli Faiza1ORCID,Ezzat Abdelrahman Osama2ORCID,Sabantina Lilia34ORCID,Benyoucef Abdelghani5ORCID,Zehhaf Abdelhafid6

Affiliation:

1. LMAE Laboratory, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria

2. Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW, 12459 Berlin, Germany

4. Department of Textile and Paper Engineering, Polytechnic University of Valencia, E-03801 Alcoy, Spain

5. LSTE Laboratory, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria

6. Laboratory of Process Engineering and Chemistry Solution, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria

Abstract

Almond shell-based biocarbon is a cheap adsorbent for the removal of malachite green, which has been investigated in this work. FT-IR, DRX, and BET were used to characterize almond shell-based biocarbon. The nitrogen adsorption-desorption isotherms analysis results showed a surface area of 120.21 m2/g and a type H4 adsorption isotherm. The parameters of initial dye concentration (5–600 mg.L−1), adsorbent mass (0.1–0.6 mg), and temperature (298–373 K) of adsorption were investigated. The experiments showed that the almond shell could be used in a wide concentration and temperature range. The adsorption study was fitted to the Langmuir isotherm and the pseudo-second-order kinetic model. The results of the FT-IR analysis demonstrated strong agreement with the pseudo-second-order chemisorption process description. The maximum adsorption capacity was calculated from the Langmuir isotherm and evaluated to be 166.66 mg.g−1. The positive ∆H (12.19 J.mol−1) indicates that the adsorption process is endothermic. Almond shell was found to be a stable adsorbent. Three different statistical design sets of experiments were taken out to determine the best conditions for the batch adsorption process. The optimal conditions for MG uptake were found to be adsorbent mass (m = 0.1 g), initial dye concentration (C0 = 600 mg.L−1), and temperature (T = 25 °C). The analysis using the D-optimal design showed that the model obtained was important and significant, with an R2 of 0.998.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3