Synthesis of Mesoporous Tetragonal ZrO2, TiO2 and Solid Solutions and Effect of Colloidal Silica on Porosity

Author:

Kong Linggen1ORCID,Karatchevtseva Inna1,Wei Tao1,Veliscek-Carolan Jessica1ORCID

Affiliation:

1. Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia

Abstract

Metal oxides possessing a large surface area, pore volume and desirable pore size provide more varieties and active industrial potentials. Nevertheless, it is very challenging to produce crystal metal oxides while keeping satisfactory porosity features, especially for ternary compositions. High temperature is usually needed to produce crystal metal oxides, which readily leads to the collapse of the pore structure. Herein, by employing a ‘soft’ dispersant agent and a hard silica template, ZrO2, TiO2 and Zr-Ti solid solutions having a tetragonal crystal structure are produced and the silica-leached materials are characterized from macroscopic to atomistic scales. The micron-sized particulate powders are composed of nanoscale ‘building blocks’, with crystallite sizes between ~8 and 21 nm. These polycrystalline ceramic powders exhibit a high specific surface area (up to ~200 m2·g−1) and pore volume (up to 0.5 cm3·g−1), with a pore size range of ~5–20 nm. Importantly, the Zr/Ti–O–Si–OH chemical bonds exist on the particle surface, with about two-thirds of the surface covered by silica. The hydroxyl groups can further post-graft organic ligands or directly associate with species. Synthesized mesoporous metal oxides are highly homogenous and could potentially be used in various applications because of their tetragonal structure and porosity features.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3