Chemical and Sensory Characterization of Xinomavro Red Wine Using Grapes from Protected Designations of Northern Greece

Author:

Goulioti Elli1,Jeffery David W.2ORCID,Kanapitsas Alexandros1,Lola Despina1ORCID,Papadopoulos Georgios3,Bauer Andrea4,Kotseridis Yorgos1

Affiliation:

1. Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

2. School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia

3. Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

4. Department of Food Science and Nutrition, Faculty Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany

Abstract

Despite Xinomavro (Vitis vinifera L.) being a well-known noble red grape variety of northern Greece, little is known about its ‘‘bouquet’’ typicity. Volatile compounds of Xinomavro wines produced using a common vinification protocol were analyzed by gas chromatography–mass spectrometry and sensory descriptive analysis was carried out with a trained panel. Wines were characterized by the presence of fatty acids, ethyl and acetate esters, and alcohols, with contributions from terpenes and a volatile phenol. The most active aroma compounds were determined to be 3-methylbutyl acetate, β-damascenone, ethyl esters of octanoic and hexanoic acids, and eugenol. Those compounds positively correlated with fruity and spicy odor descriptors, with the wines being mostly characterized by five typical aroma terms: strawberry, berry fruit, spices, tomato, and green bell pepper. Partial least squares regression (PLSR) analysis was used to visualize relationship between the orthonasal sensory attributes and the volatile aroma compounds with calculated OAVs > 1. Key aroma-active volatiles in the wines were identified using GC-MS/olfactometry, providing a list of 40 compounds, among which 13 presented a modified detection frequency > 70%. This study is the first of its kind and provided strong indications regarding the aroma compounds defining the sensory characteristics of Xinomavro wines.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3