Abstract
Noble metal nanoparticles (NP) such as gold (AuNPs) and silver nanoparticles (AgNPs) can produce ultrasensitive surface-enhanced Raman scattering (SERS) signals owing to their plasmonic properties. AuNPs have been widely investigated for their biocompatibility and potential to be used in clinical diagnostics and therapeutics or combined for theranostics. In this work, labeled AuNPs in suspension were characterized in terms of size dependency of their localized surface plasmon resonance (LSPR), dynamic light scattering (DLS), and SERS activity. The study was conducted using a set of four Raman labels or reporters, i.e., small molecules with large scattering cross-section and a thiol moiety for chemisorption on the AuNP, namely 4-mercaptobenzoic acid (4-MBA), 2-naphthalenethiol (2-NT), 4-acetamidothiophenol (4-AATP), and biphenyl-4-thiol (BPT), to investigate their viability for SERS tagging of spherical AuNPs of different size in the range 5 nm to 100 nm. The results showed that, when using 785 nm laser excitation, the SERS signal increases with the increasing size of AuNP up to 60 or 80 nm. The signal is highest for BPT labelled 80 nm AuNPs followed by 4-AATP labeled 60 nm AuNPs, making BPT and 4-AATP the preferred candidates for Raman labelling of spherical gold within the range of 5 nm to 100 nm in diameter.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献