LC-MS/MS Analysis Elucidates a Daily Rhythm in Orexin A Concentration in the Rat Vitreous Body

Author:

Chrobok LukaszORCID,Bajkacz SylwiaORCID,Klich Jasmin DanielaORCID,Lewandowski Marian HenrykORCID

Abstract

Orexins are two neuropeptides synthesised mainly in the brain lateral hypothalamic area. The orexinergic system provides arousal-dependent cues for a plethora of brain centres, playing a vital role in feeding behaviour, regulation of the sleep–wake cycle and circadian rhythms. Recently, orexins were found to be produced in the retina of an eye; however, their content in the vitreous body and possible daily pattern of expression have not yet been explored. In this manuscript, we describe the development and validation of a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method designed for quantitative bioanalysis of orexin in the rat vitreous body. Orexin was extracted from vitreous body samples with a water:acetonitrile:formic acid (80:20:0.1; v/v/v) mixture followed by vortexing and centrifuging. Separation was performed on a reverse-phase HPLC column under gradient conditions. Orexin was analysed via multiple-reaction monitoring (MRM) in the positive electrospray mode. The total analysis time for each sample was less than 5.0 min. Once the method was fully optimised, it was then validated, following the 2018 FDA guidance on bioanalytical method validations. The calibration curves for orexin (1–500 ng/mL) were constructed using a linear regression with a 1/x2 weighting. The lower limit of quantitation for orexin was 1.0 pg/mL for the vitreous body. Intra-day and inter-day estimates of accuracy and precision were within 10% of their nominal values, indicating that the method is reliable for quantitation of orexin in the rat vitreous body. From the physiological perspective, our results are the first to show daily rhythm of orexin synthesis by the retina with possible implications on the circadian regulation of vision.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3