Abstract
An increased understanding of low-density lipoprotein receptor (LDLR) and its regulation may facilitate drug development for the treatment of hypercholesterolemia. Triciribine (TCN), which is a highly selective AKT inhibitor, increases the stability of LDLR mRNA downstream of extracellular signal-regulated kinase (ERK) in human hepatoma cells (HepG2). Here, a candidate approach was used in order to determine whether the RNA-binding proteins (RBPs) ZFP36 ring finger protein like 1 (ZFP36L1) and Hu antigen R (HuR) play a role in TCN-mediated stabilization of LDLR mRNA. The depletion of HuR led to a reduction of LDLR mRNA stability, an event that was more pronounced in TCN-treated cells. TCN was found to induce the translocation of nuclear HuR to cytoplasm in an ERK-dependent manner. ZFP36L1 depletion increased the stability of LDLR mRNA consistent with its destabilizing role. However, in contrast to HuR, TCN had no effect on LDLR mRNA turnover in ZFP36L1-depleted cells. TCN induced the phosphorylation of ZFP36L1 in an ERK/RSK-dependent manner and promoted its dissociation from the CCR4-NOT complex. In sum, these data suggest that TCN utilizes ERK signaling to increase the activity of HuR and inhibit ZFP36L1 to stabilize LDLR mRNA in HepG2 cells.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RNA-binding proteins in cellular senescence;Mechanisms of Ageing and Development;2023-09