N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum

Author:

Bućan IvonaORCID,Škunca Herman Jelena,Jerončić Tomić Iris,Gornik Olga,Vatavuk Zoran,Bućan Kajo,Lauc Gordan,Polašek OzrenORCID

Abstract

The pathogenesis of age-related macular degeneration (AMD) remains elusive, despite numerous research studies. Therefore, we aimed to investigate the changes of plasma and IgG-specific N-glycosylation across the disease severity spectrum. We examined 2835 subjects from the 10.001 Dalmatians project, originating from the isolated Croatian islands of Vis and Korčula. All subjects were classified into four groups, namely (i) bilateral AMD, (ii) unilateral AMD, (iii) early-onset drusen, and (iv) controls. We analysed plasma and IgG N-glycans measured by HPLC and their association with retinal fundus photographs. There were 106 (3.7%) detected cases of AMD; 66 of them were bilateral. In addition, 45 (0.9%) subjects were recorded as having early-onset retinal drusen. We detected several interesting differences across the analysed groups, suggesting that N-glycans can be used as a biomarker for AMD. Multivariate analysis suggested a significant decrease in the immunomodulatory bi-antennary glycan structures in unilateral AMD (adjusted odds ratio 0.43 (95% confidence interval 0.22–0.79)). We also detected a substantial increase in the pro-inflammatory tetra-antennary plasma glycans in bilateral AMD (7.90 (2.94–20.95)). Notably, some of these associations were not identified in the aggregated analysis, where all three disease stages were collapsed into a single category, suggesting the need for better-refined phenotypes and the use of disease severity stages in the analysis of more complex diseases. Age-related macular degeneration progression is characterised by the complex interplay of various mechanisms, some of which can be detected by measuring plasma and IgG N-glycans. As opposed to a simple case-control study, more advanced and refined study designs are needed to understand the pathogenesis of complex diseases.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3