Fluorination Improves the Electro-Optical Properties of Benzoxazole-Terminated Liquid Crystals in High Birefringence Liquid Crystal Mixtures: Experimental and Theoretical Investigations

Author:

Chen Ran1,Mao Zihao1,An Zhongwei1,Chen Xinbing1,Chen Pei1

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China

Abstract

Aromatic heterocyclic liquid crystal (LC) materials have received much attention from LC chemists for their high birefringence and large dielectric anisotropy, yet few have reported their properties in LC mixtures. In this work, a series of fluorinated benzoxazole liquid crystal compounds were synthesized to evaluate their electro-optical properties in high birefringence LC mixtures, with the expectation of further establishing the theoretical basis and experimental evidence for their applications in LC photonics. Firstly, the effects of the lateral fluorine substituent positions on the molecular synthetic yield, mesomorphic and solubility properties were comparatively investigated. Afterwards, we focused on the fluorination effects on the core electro-optical properties, including birefringence, dielectric anisotropy and further investigation of the viscoelastic coefficient of high birefringence LC mixtures. Research results showed that the benzoxazole liquid crystal compounds possess low melting points, wide nematic phase intervals and good solubility by appropriate lateral fluorine substitution, which is beneficial to further improve the electro-optical properties of high birefringence LC mixtures. Meanwhile, the theoretical and experimental results corroborate each other to well reveal the structure–property relationship. This study demonstrates that fluorination would promote promising applications of benzoxazole-terminated liquid crystals in emerging LC optical devices.

Funder

the National Natural Science Foundation of China

Sanqin scholars innovation teams in Shaanxi Province, China

International Science and Technology Cooperation Project of Shaanxi Province, China

the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3