Determination of the Best Empiric Method to Quantify the Amplified Spontaneous Emission Threshold in Polymeric Active Waveguides

Author:

Milanese Stefania,De Giorgi Maria LuisaORCID,Anni MarcoORCID

Abstract

Amplified Spontaneous Emission (ASE) threshold represents a crucial parameter often used to establish if a material is a good candidate for applications to lasers. Even if the ASE properties of conjugated polymers have been widely investigated, the specific literature is characterized by several methods to determine the ASE threshold, making comparison among the obtained values impossible. We quantitatively compare 9 different methods employed in literature to determine the ASE threshold, in order to find out the best candidate to determine the most accurate estimate of it. The experiment has been performed on thin films of an homopolymer, a copolymer and a host:guest polymer blend, namely poly(9,9-dioctylfluorene) (PFO), poly(9,9-dioctylfluorene-cobenzothiadiazole) (F8BT) and F8BT:poly(3- hexylthiophene) (F8BT:rrP3HT), applying the Variable Pump Intensity (VPI) and the Variable Stripe Length (VSL) methods. We demonstrate that, among all the spectral features affected by the presence of ASE, the most sensitive is the spectral linewidth and that the best way to estimate the ASE threshold is to determine the excitation density at the beginning of the line narrowing. We also show that the methods most frequently used in literature always overestimate the threshold up to more than one order of magnitude.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3