Discovery of Novel 4-Hydroxyquinazoline Derivatives: In Silico, In Vivo and In Vitro Studies Using Primary PARPi-Resistant Cell Lines

Author:

Zhu Lijie1,Liu Binzhuo1,Jin Feng1,Cao Weilong1,Xu Guangzhao1,Zhang Xinwei1,Peng Peng2,Gao Dingding3,Wang Bin1,Feng Kairui1

Affiliation:

1. School of Pharmacy, Shandong Second Medical University, Weifang 261053, China

2. School of Pharmacy (Preparatory), East China Normal University, Shanghai 200241, China

3. The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Abstract

A series of novel 4-Hydroxyquinazoline derivatives were designed and synthesized to enhance sensitivity in primary PARPi-resistant cells. Among them, the compound B1 has been found to have superior cytotoxicity in primary PARPi-resistant HCT-15 and HCC1937 cell lines, and dose-dependently suppressed the intracellular PAR formation and enhanced the γH2AX aggregation. Mechanistic study showed that B1 stimulated the formation of intracellular ROS and the depolarization of the mitochondrial membrane, which could increase apoptosis and cytotoxicity. An in vivo study showed that B1 significantly suppressed tumor growth at a dose of 25 mg/kg, and an acute toxicity study confirmed its safety. Molecular docking and dynamics simulations revealed that hydrogen bonding between B1 and ASP766 may be helpful to enhance anti-drug resistance ability. This study suggests that B1 is a potent PARP inhibitor that can overcome PARPi resistance and deserves further investigation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Overseas Excellent Youth Science Fund project of Shandong Province

Taishan Scholar Project of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3