Abstract
The complications of inflammatory bowel diseases (IBDs) seriously endanger people’s health, such as bleeding, polyp hyperplasia, and even cancer. Although the precise pathophysiology of IBD is unknown, alterations in the intestinal lymphatic network, such as lymphangiogenesis and lymphatic vessel dysfunction, are well-established features. Therefore, the development of a reliable technology is urgently required, with a stereoscopic, deep, and high-resolution technology for IBD lymphatic targeting imaging in clinical practice. However, indocyanine green, the only clinically approved imaging agent by the Food and Drug Administration, can easily cause self-aggregation or be interfered with by microenvironments, causing fluorescence quenching, which seriously affects the imaging and detective capabilities. Herein, indocyanine green molecules are arranged in a 1.5-nanometer one-dimensional channel (TpPa-1@ICG). Based on this specified structure, the fluorescence enhancement effect is observed in the TpPa-1@ICG resultant, and the fluorescence intensity is enhanced by 27%. In addition, the ICG-incorporated porous solid reveals outstanding solvent (dichloromethane, tetrahydrofuran, etc.) and thermal (>300 °C) stability. After modifying the target molecules, TpPa-1@ICG showed excellent imaging ability for intestinal lymphatic vessels, providing a new imaging tool for IBDs research
Funder
the National Natural Science Foundation of China
the Department of Education of Jilin Province
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献