Abstract
In this work, an innovative, flow-through, double-beam, photometric detector with direct injection of the reagents (double-DID) was used for the first time for the determination of iron in pharmaceuticals. For stable measurement of the absorbance, double paired emission-detection LED diodes and a log ratio precision amplifier have been applied. The detector was integrated with the system of solenoid micro-pumps. The micro-pumps helped to reduce the number of reagents used and are responsible for precise solution dispensing and propelling. The flow system is characterized by a high level of automation. The total iron was determined as a Fe(II) with photometric detection using 1,10-phenanthroline as a complexing agent. The optimum conditions of the propose analytical procedure were established and the method was validated. The calibration graph was linear in the range of 1 to 30 mg L−1. The limit of detection (LOD) was 0.5 mg L−1. The throughput of the method was 90 samples/hour. The repeatability of the method expressed as the relative standard deviation (R.S.D.) was 2% (n = 10). The method was characterized by very low consumption of reagents and samples (20 μL each) and a small amount of waste produced (about 540 µL per analysis). The proposed flow method was successfully applied for determination of iron in pharmaceutical products. The results were in good agreement with those obtained using the manual UV-Vis spectrophotometry and with values claimed by the manufacturers. The flow system worked very stably and was insensitive to bubbles appearing in the system.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献