Qualitative Analysis of Novel Flavonoid Adducts from Nerve Agent Tabun-Exposed Arabidopsis thaliana (L.) Based on Quadrupole–Time of Flight Mass Spectrometry

Author:

Xing Zhongfang1ORCID,Zhang Ruiqian1,Zhao Zhehui2ORCID,Yuan Ling1,Yu Huilan1,Yang Yang1,Yang Yuntao1,Liu Shilei1,Pei Chengxin1

Affiliation:

1. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

2. State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

Abstract

Flavonoids are a kind of secondary metabolite which widely exist in plants. They contain a lot of active hydroxyls, which can react with toxic chemicals to produce potential exposure biomarkers. In this article, the model plant Arabidopsis thaliana (L.) was exposed to the nerve agent O-Ethyl N,N-dimethyl phosphoramidocyanidate (Tabun). By comparing with the plant not exposed to Tabun, some characteristic ions were identified by quadrupole–time of flight mass spectrometry in the acetonitrile extract of the exposed leaves. These characteristic ions were selected as parent ions to produce product ion mass spectra (PIMS). Some interesting fragmentation pathways were revealed, including neutral loss of glucoside, rhamnose and ethylene. O-Ethyl N,N-dimethyl phosphoryl modified flavonoids were deduced from assignment of the PIMS. The element components and the accurate mass of the product ions from each parent ion matched well with those of the proposed fragmentation pathways. Through comparison with the PIMS of structurally closely related chemical of Isobutyl methylphosphonyl modified flavonoids, the structures and the fragmentation pathways of the O-Ethyl N,N-dimethyl phosphoryl modified flavonoids were finally confirmed. Successfully finding and identifying these three specific exposure biomarkers in plants provided a new strategy for the retrospective analysis of organophosphorus exposure and forensic analysis.

Funder

State Key Laboratory of NBC Protection for Civilians

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3