Author:
Tang Haodong,Xu Bin,Xiang Meng,Chen Xinxin,Wang Yao,Liu Zongjian
Abstract
Nitrogen-doped activated carbon (N-AC) obtained through the thermal treatment of a mixture of HNO3-pretreated activated carbon (AC) and urea under N2 atmosphere at 600 °C was used as the carrier of Pd catalyst for both liquid-phase hydrodechlorination of 2,4-dichlorophenol (2,4-DCP) and gas-phase hydrodechlorination of chloropentafluoroethane (R-115). The effects of nitrogen doping on the dispersion and stability of Pd, atomic ratio of Pd/Pd2+ on the surface of the catalyzer, the catalyst’s hydrodechlorination activity, as well as the stability of N species in two different reaction systems were investigated. Our results suggest that, despite no improvement in the dispersion of Pd, nitrogen doping may significantly raise the atomic ratio of Pd/Pd2+ on the catalyst surface, with a value of 1.2 on Pd/AC but 2.2 on Pd/N-AC. Three types of N species, namely graphitic, pyridinic, and pyrrolic nitrogen, were observed on the surface of Pd/N-AC, and graphitic nitrogen was stable in both liquid-phase hydrodechlorination of 2,4-DCP and gas-phase hydrodechlorination of R-115, with pyridinic and pyrrolic nitrogen being unstable during gas-phase hydrodechlorination of R-115. As a result, the average size of Pd nanocrystals on Pd/N-AC was almost kept unchanged after liquid-phase hydrodechlorination of 2,4-DCP, whereas crystal growth of Pd was clearly observed on Pd/N-AC after gas-phase hydrodechlorination of R-115. The activity test revealed that Pd/N-AC exhibited a much better performance than Pd/AC in liquid-phase hydrodechlorination of 2,4-DCP, probably due to the enhanced stability of Pd exposed to the environment resulting from nitrogen doping as suggested by the higher atomic ratio of Pd/Pd2+ on the catalyst surface. In the gas-phase hydrodechlorination of R-115, however, a more rapid deactivation phenomenon occurred on Pd/N-AC than on Pd/AC despite a higher activity initially observed on Pd/N-AC, hinting that the stability of pyridinic and pyrrolic nitrogen plays an important role in the determination of catalytic performance of Pd/N-AC.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献