Interactive Field Effect of Atomic Bonding Forces on the Equivalent Elastic Modulus Estimation of Micro-Level Single-Crystal Copper by Utilizing Atomistic-Continuum Finite Element Simulation

Author:

Lee Chang-ChunORCID,He Jing-Yan

Abstract

This study uses the finite element analysis (FEA)-based atomistic-continuum method (ACM) combined with the Morse potential of metals to determine the effects of the elastic modulus (E) of a given example on atomic-level single-crystal copper (Cu). This work aims to overcome the estimated drawback of a molecular dynamic calculation applied to the mechanical response of macro in-plane-sized and atomic-level-thick metal-based surface coatings. The interactive energy of two Cu atoms within a face-centered metal lattice was described by a mechanical response of spring stiffness. Compared with the theoretical value, the parameters of the Morse potential dominated the predicted accuracy through the FEA-based ACM. Moreover, the analytic results indicated that the effective E of a single-crystal Cu was significantly sensitive to the given range of the interactive force field among atoms. The reliable elastic moduli of 86.8, 152.6, and 205.2 GPa along the Cu(100), Cu(110), and Cu(111) orientations of the Cu metal were separately acquired using the presented FEA-based ACM methodology.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3