Fabrication of an Fe-Doped ZIF-67 Derived Magnetic Fe/Co/C Composite for Effective Removal of Congo Red

Author:

Cao Yu1ORCID,Dai Zeming1,Zhou Xuan1,Lin Yuting1,Hou Jianhua12

Affiliation:

1. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China

2. Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China

Abstract

The dyes in printing and dyeing wastewater are harmful to the human body and the environment. It is essential to develop practical and effective adsorbents to deal with them. In this study, an Fe-doped, ZIF-67 derived Fe/Co/C composite material with strong magnetism was successfully synthesized. The effects of pH, initial concentration, and adsorption time on the properties of the adsorbent were investigated. To further improve the removal efficiency and enhance the practicality, potassium peroxymonosulfate (PMS) was added to the system due to its Fenton-like effect. Then, an Fe/Co/C composite was used with PMS to remove Congo red (CR) with a 98% removal of 250 mg·L−1. Moreover, for its high saturation magnetization of 85.4 emu·g−1, the Fe/Co/C composite can be easily recovered by applying a magnetic field, solving the problem that powdery functional materials are difficult to recover and, thus, avoiding secondary pollution. Furthermore, since the composite material was doped before carbonization, this synthetic strategy is flexible and the required metal elements can be added at will to achieve different purposes. This study demonstrates that this Fe-doped, ZIF-67 derived magnetic material has potential application prospects for dye adsorption.

Funder

National Natural Science Foundation of China

Qing Lan Project

333 Project in Jiangsu Province

Six Talent Peaks Project in Jiangsu Province

Key University Science Research Project of Jiangsu Province

Yangzhou Lv Yang Jin Feng project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3