Conditions for Shake-Gel Formation: The Relationship between the Size of Poly(Ethylene Oxide) and the Distance between Silica Particles

Author:

Huang Yi,Sato Shunsuke,Kobayashi MotoyoshiORCID

Abstract

Colloidal silica suspensions are widely used in many fields, including environmental restoration, oil drilling, and food and medical industries. To control the rheological property of suspensions, poly(ethylene oxide) (PEO) polymers are often used. Under specific conditions, the silica-PEO suspension can create a phenomenon called a shake-gel. Previous works discussed the conditions necessary to form a shake-gel and suggested that the bridging effect of the polymer is one of the important mechanisms for shake-gel formation. However, we noted that the influence of PEO size compared to the separation distance between silica particles regarding shake-gel formation has not been systematically investigated, while the PEO size should be larger than the particle–particle separation distance for polymer bridging in order to form gels. Thus, we conducted a series of experiments to examine the effects of the radius of gyration of the PEO and the distance between the silica particles by controlling the PEO molecular weight and the silica concentration. Our results elucidated that the radius of gyration of the PEO should be 2.5 times larger than the distance between the silica surfaces in order to promote the formation of a shake-gel. This result supports the hypothesis that the bridging effect is the main cause of shake-gel formation, which can help us to understand the conditions necessary for shake-gel preparation.

Funder

JSPS KAKENHI

Innovative Science and Technology Initiative for Security

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3