Spin-Space-Encoding Magnetic Resonance Imaging: A New Application for Rapid and Sensitive Monitoring of Dynamic Swelling of Confined Hydrogels

Author:

Wang Rui1,Xin Jiaxiang1,Ji Zhengxiao1,Zhu Mengni1,Yu Yihua1,Xu Min1ORCID

Affiliation:

1. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Abstract

An NMR method based on the gradient-based broadening fingerprint using line shape enhancement (PROFILE) is put forward to precisely and sensitively study hydrogel swelling under restricted conditions. This approach achieves a match between the resonance frequency and spatial position of the sample. A three-component hydrogel with salt ions was designed and synthesized to show the monitoring more clearly. The relationship between the hydrogel swelling and the frequency signal is revealed through the one-dimensional imaging. This method enables real-time monitoring and avoids changing the swelling environment of the hydrogel during contact. The accuracy of this method may reach the micron order. This finding provides an approach to the rapid and non-destructive detection of swelling, especially one-dimensional swelling, and may show the material exchange between the hydrogel and swelling medium.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3