Metallocene-Naphthalimide Derivatives: The Effect of Geometry, DFT Methodology, and Transition Metals on Absorption Spectra

Author:

Tzeliou Christina Eleftheria1ORCID,Tzeli Demeter12ORCID

Affiliation:

1. Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece

2. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece

Abstract

In the present paper, the photophysical properties of metallocene-4-amino-1,8-naphthalimide-piperazine molecules (1-M2+), as well as their oxidized and protonated derivatives (1−M3+, 1-M2+-H+, and 1-M3+-H+), where M = Fe, Co, and Ni, were studied via DFT and TD-DFT, employing three functionals, i.e., PBE0, TPSSh, and wB97XD. The effect of the substitution of the transition metal M on their oxidation state, and/or the protonation of the molecules, was investigated. The present calculated systems have not been investigated before and, except for the data regarding their photophysical properties, the present study provides important information regarding the effect of geometry and of DFT methodology on absorption spectra. It was found that small differences in geometry, specifically in the geometry of N atoms, reflect significant differences in absorption spectra. The common differences in spectra due to the use of different functionals can be significantly increased when the functionals predict minima even with small geometry differences. For most of the calculated molecules, the main absorption peaks in visible and near-UV areas correspond mainly to charge transfer excitations. The Fe complexes present larger oxidation energies at 5.4 eV, whereas Co and Ni complexes have smaller ones, at about 3.5 eV. There are many intense UV absorption peaks with excitation energies similar to their oxidation energies, showing that the emission from these excited states can be antagonistic to their oxidation. Regarding the use of functionals, the inclusion of dispersion corrections does not affect the geometry, and consequently the absorption spectra, of the present calculated molecular systems. For certain applications, where there is a need for a redox molecular system including metallocene, the oxidation energies could be lowered significantly, to about 40%, with the replacement of the iron with cobalt or nickel. Finally, the present molecular system, using cobalt as the transition metal, has the potential to be used as a sensor.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3