Peripheralization Strategies Applied to Morphinans and Implications for Improved Treatment of Pain

Author:

Schmidhammer Helmut1ORCID,Al-Khrasani Mahmoud2ORCID,Fürst Susanna2,Spetea Mariana1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria

2. Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary

Abstract

Opioids are considered the most effective analgesics for the treatment of moderate to severe acute and chronic pain. However, the inadequate benefit/risk ratio of currently available opioids, together with the current ‘opioid crisis’, warrant consideration on new opioid analgesic discovery strategies. Targeting peripheral opioid receptors as effective means of treating pain and avoiding the centrally mediated side effects represents a research area of substantial and continuous attention. Among clinically used analgesics, opioids from the class of morphinans (i.e., morphine and structurally related analogues) are of utmost clinical importance as analgesic drugs activating the mu-opioid receptor. In this review, we focus on peripheralization strategies applied to N-methylmorphinans to limit their ability to cross the blood–brain barrier, thus minimizing central exposure and the associated undesired side effects. Chemical modifications to the morphinan scaffold to increase hydrophilicity of known and new opioids, and nanocarrier-based approaches to selectively deliver opioids, such as morphine, to the peripheral tissue are discussed. The preclinical and clinical research activities have allowed for the characterization of a variety of compounds that show low central nervous system penetration, and therefore an improved side effect profile, yet maintaining the desired opioid-related antinociceptive activity. Such peripheral opioid analgesics may represent alternatives to presently available drugs for an efficient and safer pain therapy.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3