Unrevealing the Potential of Sansevieria trifasciata Prain Fraction for the Treatment of Androgenetic Alopecia by Inhibiting Androgen Receptors Based on LC-MS/MS Analysis, and In-Silico Studies

Author:

Kasmawati HennyORCID,Mustarichie ResmiORCID,Halimah Eli,Ruslin Ruslin,Arfan ArfanORCID,Sida Nurramadhani A.

Abstract

Androgenetic Alopecia (AGA) occurs due to over-response to androgens causing severe hair loss on the scalp, and requires the development of new and efficient drugs to treat this condition. This study explores and identifies secondary metabolites from Sansevieriatrifasciata Prain using the LC-MS/MS and in-silico method. The inhibitory activity of bioactive compounds from S. trifasciata Prain against androgen receptors (PDB ID: 4K7A) was evaluated molecularly using docking and dynamics studies by comparing their binding energies, interactions, and stability with minoxidil. The results of the LC-MS/MS analysis identified Methyl pyrophaeophorbide A (1), Oliveramine (2), (2S)-3′, 4′-Methylenedioxy-5, 7-dimethoxyflavane (3), 1-Acetyl-β-carboline (4), Digiprolactone (5), Trichosanic acid (6) and Methyl gallate (7) from the leaves subfraction of this plant. Three alkaloid compounds (compounds 1, 3, and 4), and one flavonoid (compound 2), had lower docking scores of −7.0, −5.8, −5.2, and −6.3 kcal/mol, respectively. The prediction of binding energy using the MM-PBSA approach ensured that the potency of the four compounds was better than minoxidil, with energies of −66.13, −59.36, −40.39, and −40.25 kJ/mol for compounds 1, 3, 2, and 4, respectively. The dynamics simulation shows the stability of compound 1 based on the trajectory analysis for the 100 ns simulation. This research succeeded in identifying the compound and assessing the anti-alopecia activity of Sansevieria trifasciata Prain. Seven compounds were identified as new compounds never reported in Sansevieria trifasciata Prain. Four compounds were predicted to have better anti-alopecia activity than minoxidil in inhibiting androgen receptors through an in silico approach.

Funder

Directorate of Research and Community Engagement by scheme "Penelitian Dasar Unggulan Perguruan Tinggi"

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference57 articles.

1. Traction alopecia: the root of the problem

2. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

3. Androgenetic Alopecia

4. Androgenetic Alopecia BT—European Handbook of Dermatological Treatments;Trüeb,2015

5. Incidence of Female Androgenetic Alopecia (Female Pattern Alopecia);Norwood;Dermatol. Surg.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3