Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review

Author:

Ma Yunlu,Liu Xi

Abstract

The MgAl2O4-spinel has wide applications in various industries and in geosciences. It shows a significant inter-site Mg-Al cation exchange (denoted by the inversion parameter x), which modifies structural features, such as the unit-cell parameters and the sizes of the component polyhedra, and influences the physical and chemical properties. Previous studies mainly focused on the kinetics and thermodynamics of the Mg-Al exchange reaction, with the aim to ascertain the correlation between the inversion parameter and temperature; these studies, however, reached conflicting results. Here, we first reviewed the kinetics studies on the Mg-Al cation exchange reaction, and then reviewed all thermodynamic experiments, with special attention paid to the Mg-Al cation exchange equilibrium and the quench process, which might have modified the cation distributions once attained at high temperatures. We also assessed the accuracies in the temperature measurements and in the quantifications of the x by different analytical methods. With some necessary temperature correction and data removal, we have landed with a generally reliable x-T dataset covering the T-x space of 873 < T < 1887 K and 0.18(1) < x < 0.357(60) (71 data pairs in total). Fitting these x-T data to three most commonly used thermodynamic models, we have obtained more accurate model parameters. Further, we also evaluated the constituent items of the Gibbs free energy for the Mg-Al cation exchange reaction with experimental results from different research fields and reached the conclusion that highly possibly the T Δ S D should not be neglected. Based on this review, we suggest that: (1) Further kinetics study on the Mg-Al exchange reaction should be performed at both low T (<~973 K) and high T (>~1173 K); (2) further Mg-Al exchange equilibrium studies should be carried out at relatively low T and ambient P, as well as in vast ranges of simultaneous high P and high T; and (3) direct experimental measures about the entropies or the enthalpies of the MgAl2O4-spinels disordered to different extents should be conducted with full characterization of the starting materials and detailed description of the experimental procedures.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference95 articles.

1. High-Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel

2. An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO–C refractories

3. Industrial applications of refractories containing magnesium aluminate spinel;Maschio;Ind. Ceram.,1988

4. Material design of monolithic refractories for steel ladle;Mori;Bull. Am. Ceram. Soc.,1990

5. Fabrication of Translucent Magnesium Aluminum Spinel Ceramics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3